G_0 OF A GRADED RING(1)

BY LESLIE G. ROBERTS

Abstract. We consider the Grothendieck group G_0 of various graded rings, including $G_0(A_n^r)$ where A is a commutative noetherian ring, and A_n^r is the A-subalgebra of the polynomial ring $A[X_0, \ldots, X_n]$ generated by monomials of degree r. If A is regular, then $G_0(A_n^r)$ has a ring structure. The ideal class groups of these rings are also considered.

Introduction. Let A be a commutative noetherian ring with 1, and let $G_0(A)$ denote the Grothendieck group of A-modules of finite type, as in [1]. Let A_n^r be the A-subalgebra of $A[X_0, \ldots, X_n]$ generated by the monomials of degree r (the X_i are indeterminants). Then we consider $G_0(A_n^r)$. My original attack on this problem made use of the exact sequence in Theorem 6.2, p. 492 of [1]. This method is sufficient to handle the case where A is regular, and an exposition for the case where A is a field can be found in [11]. The method used in this paper, that of blowing up the cone Spec (A_n^r) at the vertex, was suggested to me by Grothendieck, and is sufficient to handle the case where A is not regular, as well as other graded rings besides A_n^r . The case where A is not commutative, but is regular, can be handled by my original approach—this is done in §8.

The motivation for this paper comes from several sources. The groups $G_0(A_n^r)$ are closely related to the groups $K_0(A_n)$ ($K_0(A_n')$) considered in [5], and I had hoped originally to obtain information about the latter groups by calculating $G_0(A_n^r)$. This relation is discussed in §6. Furthermore, the ideal class groups of the A_n^r are calculated by Samuel for A a field in [9] (with various restrictions on the field). We have a surjection $G_0(A_n^r) \to Z \oplus c(A_n^r)$ (by [4, §4, Proposition 16]), and it will be shown that this map is not necessarily an isomorphism.

Unless otherwise stated, the notation will be that of E.G.A. [6], [7]. Throughout, Z denotes the ring of integers.

2. G_0 of a graded ring. Let $B = \bigoplus_{n \ge 0} B_n$ be a commutative graded ring, such that $B_0 = A$ is noetherian, and B is generated as an A-algebra by a finite number of elements of B_1 . Let X = Proj (B), and let $f: X \to \text{Spec } A$ be the structure morphism.

Received by the editors April 27, 1971.

AMS 1970 subject classifications. Primary 13D15, 14F15, 18F25; Secondary 16A54.

Key words and phrases. Grothendieck group, G_0 , graded ring, ideal class group.

⁽¹⁾ The preparation of this paper was partially supported by the National Research Council of Canada, grant A7209.

Let $\mathscr{L} = \mathscr{O}_X(1)$ and let S be the A-algebra $S = A \oplus (\bigoplus_{n \ge 1} \Gamma(\mathscr{L}^{\otimes n}))$. Then by Proposition 8.8.2, p. 178 of [6], we have a commutative diagram

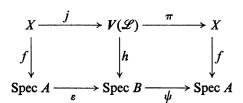
$$X \xrightarrow{j} V(\mathcal{L}) \xrightarrow{\pi} X$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$\text{Spec } A \xrightarrow{\varepsilon} \text{Spec } (S) \xrightarrow{\psi} \text{Spec } A$$

where ψ and π are the structure morphisms and ε is the closed immersion corresponding to the augmentation homomorphism $S \to A$ (that is, the homomorphism sending elements of positive degree to zero). The morphism j is the zero section of $V(\mathcal{L})$. Furthermore the restriction of g to $V(\mathcal{L})-j(X)$ gives an isomorphism $g: V(\mathcal{L})-j(X) \to \operatorname{Spec}(S)-\varepsilon(\operatorname{Spec} A)$.

The canonical homomorphism of graded rings $\alpha \colon B \to S$ is a TN-isomorphism by Proposition 2.3.1, p. 102 of [7]. That is, there exists N so that, for $n \ge N$, $\alpha_n \colon B_n \to S_n = \Gamma(\mathcal{L}^{\otimes n})$ is an isomorphism. Let x_1, \ldots, x_r be elements in B_1 which generate B as an A-algebra. Then the $D(x_i)$ give an open covering of Spec $B - V(B_+)$, and $D(\alpha(x_i))$ give an open covering of Spec $S - V(S_+) = \operatorname{Spec}(S) - \varepsilon(\operatorname{Spec}A)$. (Here, as usual, + denotes the elements of positive degree, and $D(f) = \operatorname{Spec} - V(f)$.) Since α is a TN-isomorphism, it follows readily that α induces isomorphisms $\alpha_i \colon B_{x_i} \to S_{\alpha(x_i)}$, hence isomorphisms $\alpha_i \colon D(\alpha(x_i)) \to D(x_i)$. Thus α gives an isomorphism $\alpha_i \colon \operatorname{Spec}(S - \varepsilon(\operatorname{Spec}A) \to \operatorname{Spec}(S - V(B_+))$. If we denote the structure morphism and the augmentation morphism of B by ψ and ε also, then we get, by substituting Spec B in place of Spec (S), a commutative diagram



where $h={}^{a}\alpha \cdot g$. Also restriction of h to $V(\mathcal{L})-j(X)$ gives an isomorphism $h\colon V(\mathcal{L})-j(X)\to \operatorname{Spec} B-\varepsilon(\operatorname{Spec} A)$. This substitution is unnecessary if α is already an isomorphism, as is the case if $B=A[X_0,\ldots,X_n]$ (X_i indeterminants) or if B is integrally closed.

The scheme $V(\mathcal{L})$ is obtained by blowing up S at S_+ . Since Proj is unchanged if the graded ring is changed in a finite number of degrees, $V(\mathcal{L})$ is also obtained by blowing up B at the ideal B_+ . (Blowing up is defined on p. 153 of [6].)

For a noetherian scheme, let K' denote the Grothendieck group of locally free sheaves of finite type, and K denote the Grothendieck group of coherent sheaves,

as in [10]. Thus $K(\operatorname{Spec} B) = G_0(B)$. From the above commutative diagram of schemes, we get a commutative diagram

$$K_{\cdot}(X) \xrightarrow{j_{*}} K_{\cdot}(V(\mathscr{L})) \longrightarrow K_{\cdot}(V(\mathscr{L}) - j(X)) \longrightarrow 0$$

$$f_{*} \downarrow \qquad \qquad \downarrow h_{*} \qquad \qquad \cong \downarrow f_{*}$$

$$G_{0}(A) \xrightarrow{\varepsilon_{*}} G_{0}(B) \longrightarrow K_{\cdot}(\operatorname{Spec} B - \varepsilon(\operatorname{Spec} A)) \longrightarrow 0$$

The horizontal rows are exact sequences by Proposition 1.1, Exposé IX of [10]. The morphisms f and h are proper, so the homomorphisms f_* and h_* can be defined as in [3, p. 110] (there called f_i).

By Proposition 1.6, Exposé IX of [10], $\pi^*: K_{\cdot}(X) \to K_{\cdot}(V(\mathcal{L}))$ is an isomorphism. (π^* is defined since π is a flat morphism.) Since $\pi \circ j$ is the identity on X, we have that j^* is an inverse for π^* . By Proposition 1.8 Exposé IX of [10], $j^* \circ j_*$ is multiplication by $1 - \mathcal{O}(1) \in K^{\cdot}(X)$. Identify $K_{\cdot}(X)$ and $K_{\cdot}(V(\mathcal{L}))$ by isomorphism j^* . Then the above diagram yields:

THEOREM 1. Let B be a graded ring as at the beginning of this section, and let X = Proj (B). Then we have an exact sequence

$$G_0(A) \xrightarrow{\varepsilon_*} G_0(B) \longrightarrow K_{\cdot}(X)/(1-\mathcal{O}(1))K_{\cdot}(X) \longrightarrow 0,$$

where ε_* is induced by the augmentation homomorphism $B \to B_0 = A$.

COROLLARY. If ε_* is zero, then $G_0(B) \cong K_1(X)/(1-\mathcal{O}(1))K_1(X)$.

3. Applications. If the augmentation homomorphism $B \xrightarrow{\varepsilon} A$ factors through a pure transcendental extension, $B \xrightarrow{\varepsilon_1} A[X] \xrightarrow{\varepsilon_2} A$, with ε_1 surjective, then ε_* is zero. For ε_* is the composition

$$G_0(A) \xrightarrow{G_0(\varepsilon_2)} G_0(A[X]) \xrightarrow{G_0(\varepsilon_1)} G_0(B),$$

and I claim that $G_0(\varepsilon_2)$ is zero. For let M be any A-module. Then we have an exact sequence of A-modules $0 \longrightarrow M[X] \xrightarrow{X} M[X] \longrightarrow M \longrightarrow 0$, where $M[X] = M \otimes_A A[X]$. This shows that the class of M in $G_0(A[X])$ is zero. Some examples are the following:

(1) $B=A_n^r$, as defined in the introduction. (If the degrees are divided by r, then the above hypotheses on B are satisfied.) Then $A_n^r \to A$ factors through A[X] by sending X_0^r to X and any term involving X_i (i>0) to zero. Also $\text{Proj}(A_n^r) = P_A^n$ (projective n-space over A), and

$$K_{\cdot}(P_A^n) = G_0(A)[X]/(X^{n+1}) \qquad (= G_0(A) \otimes_Z Z[X]/(X^{n+1}))$$

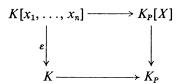
(Proposition 3.1, Exposé IX of [10]). We may choose X so that the class of $\mathcal{O}(1)$ in $K(P_A^n)$ is $(1+X)^r$. Thus we have

THEOREM 2. Let A be a commutative noetherian ring with unit, and let A_n^r be as defined in the introduction. Then $G_0(A_n^r) = G_0(A) \otimes_Z Z[X]/(X^{n+1}, (1+X)^r - 1)$.

COROLLARY. If
$$G_0(A) = Z$$
, then $G_0(A_n^r) = Z[X]/(X^{n+1}, (1+X)^r - 1)$.

(2) Let B be the homogeneous coordinate ring of an algebraic variety V over an algebraically closed field $K=B_0$. Let P be any closed point of Spec B (other than the origin). Then the straight line through the origin and P is an affine line which is a closed subscheme of Spec B. Thus we have a surjection $B \to K[X]$ and the corollary to Theorem 1 again applies, yielding $G_0(B) = K_{\cdot}(V)/(1-\mathcal{O}(1))K_{\cdot}(V)$. For example, if V is a complete nonsingular curve, then $K_{\cdot}(V) = Z \oplus \operatorname{Pic}_{0}(V)$ and $\mathcal{O}(1)$ is the class of a hyperplane section. If $\mathcal{O}(1)$ is of degree r, the direct sum decomposition $\operatorname{Pic}(V) = Z \oplus \operatorname{Pic}_{0}(V)$ can be chosen so that the class of $\mathcal{O}(1)$ is $r \oplus 0$. Thus we get $G_0(B) = Z \oplus Z/rZ \oplus \operatorname{Pic}_{0}(V)$.

More generally, let $B=K[x_1,\ldots,x_n]$ be the homogeneous coordinate ring of an algebraic variety over field K that is not necessarily algebraically closed, with the x_i homogeneous of degree one. Let P be a closed point (other than the vertex) with residue field K_P . Then K_P is a finite extension of K, of degree d_P , and we have a surjection $e_P: K[x_1,\ldots,x_n] \to K_P$. Suppose $e_P(x_i) = \bar{x}_i$. Then we have a homomorphism $K[x_1,\ldots,x_n] \to K_P[X]$ (X an indeterminant) defined by $x_i \to \bar{x}_i X$. This map is well defined since $K[x_1,\ldots,x_n] = K[X_1,\ldots,X_n]/I$, where the X_i are indeterminants, and I is a homogeneous ideal. It is easily seen that $K_P[X]$ is a $K[x_1,\ldots,x_n]$ -module of finite type. Thus we have a commutative diagram



and the induced maps on G_0 show that the image of ε_* is killed by d_P . Thus the image of ε_* is killed by the greatest common divisor of the d_P , as P ranges over all the closed points of Spec B (other than the vertex). In particular, if there is a K-rational point, then $\varepsilon_*=0$ and the corollary to Theorem 1 applies.

4. The ring structure on G_0 . Suppose A is a commutative noetherian regular ring of finite Krull dimension d. Then $G_0(A) = K_0(A)$ is a ring, so

$$G_0(A_n^r) = K_0(A) \otimes_{\mathbb{Z}} \mathbb{Z}[X]/(X^{n+1}, (1+X)^r - 1) = K_0(A)[X]/(X^{n+1}, (1+X)^r - 1)$$

is a ring. If r > 1, then A_n^r is not a regular ring, so one might not expect $G_0(A_n^r)$ to have a ring structure. However, Spec A_n^r is regular outside of $V((A_n^r)_+)$, and we have shown that $G_0(A_n^r) = K_1(\operatorname{Spec} A_n^r - V((A_n^r)_+))$ and the latter equals $K'(\operatorname{Spec} A_n^r - V((A_n^r)_+))$ which has a ring structure. The ring structure can be described explicitly in terms of A_n^r -modules of finite type as follows. Let M and N be A_n^r -modules of finite type, and let [M] and [N] denote their classes in $G_0(A_n^r)$.

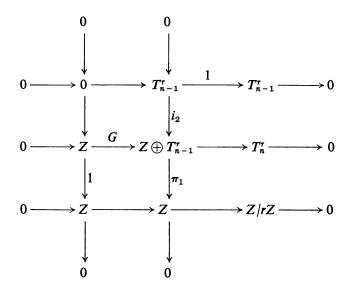
Then $[M][N] = \sum_{i=0}^{n+d+1} (-1)^i [\operatorname{Tor}_i(M, N)]$. This is a well-defined multiplication, since if $0 \to N_1 \to N \to N_2 \to 0$ is a short exact sequence, then we have an exact sequence $0 \to X \to \operatorname{Tor}_{n+d+1}(M, N_1) \to \cdots \to M \otimes N \to M \otimes N_2 \to 0$. The module X has support contained in $V((A_n^r)_+)$ since A_n^r is of Krull dimension n+d+1 and is regular outside of $V((A_n^r)_+)$. Thus [X] = 0 in $G_0(A_n^r)$. Note that if M and N are locally free outside of $\varepsilon(\operatorname{Spec} A)$, then $[M][N] = [M \otimes N]$.

If A is any noetherian ring of finite Krull dimension, and any module whose support is contained in the singular locus has zero image in $G_0(A)$, then one can put a ring structure on $G_0(A)$ in the same manner as above. The above examples indicate that such rings are fairly common.

5. The abelian group structure. We consider the abelian group structure of the ring $Z[X]/(X^{n+1}, (1+X)^r - 1) = B_{n,r}$. Multiplication by X gives a homomorphism $B_{n-1,r} \xrightarrow{X} B_{n,r}$ with cokernel Z. Let $F \in Z[X]$ represent an element in the kernel. Then $XF = AX^{n+1} + B((1+X)^r - 1)$ with $A, B \in Z[X]$, and $F = AX^n + BG$, where $G = ((1+X)^r - 1)/X$. But X^n is already zero in $B_{n-1,r}$. Thus the kernel is principal, generated by the class of G = r + (terms involving X). This element of $B_{n-1,r}$ is of infinite order so we have an exact sequence

$$0 \longrightarrow Z \longrightarrow B_{n-1,r} \xrightarrow{X} B_{n,r} \longrightarrow Z \longrightarrow 0.$$

Clearly $B_{n,r}$ is of rank one, so write $B_{n,r} = Z \oplus T_n^r$. The last homomorphism in the exact sequence is projecting onto the first direct summand. Thus we have an exact sequence $0 \longrightarrow Z \xrightarrow{G} Z \oplus T_{n-1}^r \longrightarrow T_n^r \longrightarrow 0$. Form the commutative diagram



All rows and columns are exact. Therefore there exist maps in the last column

making the diagram commute and the last column exact. Therefore we have an exact sequence

$$0 \rightarrow T_{n-1}^r \rightarrow T_n^r \rightarrow Z/rZ \rightarrow 0$$
.

Since $T_0^r = 0$, we have $T_1^r = Z/rZ$, and more generally that T_n^r is of order r^n .

Now suppose that $r=r_1r_2$ where r_1 and r_2 are relatively prime. Then we have a surjection of rings $B_{n,r_1r_2} \to B_{n,r_1} \to 0$ and hence a surjection $T_n^{r_1r_2} \to T_n^{r_1} \to 0$. This splits since $T_n^{r_1}$ has order r_n^n , the kernel has order r_n^n , and $(r_1, r_2) = 1$. Thus $T_n^{r_1}$ is the subgroup of $T_n^{r_1r_2}$ consisting of all elements killed by r_n^n . Similarly for r_2 , so $T_n^{r_1r_2} = T_n^{r_1} \oplus T_n^{r_2}$. This reduces the problem to r a prime power.

The abelian group T_n^r has generators X, X^2, \ldots, X^n , and relations $\sum_{i=1}^r C_i^r X^{i+s}$, $0 \le s \le n-1$, where the C_i^r are the binomial coefficients, and the summations stop with the term X^n .

Suppose first that r is a prime. Then $C_1^r = r$, and C_i^r has a factor r, $2 \le i < r - 1$. By subtracting the above relations from each other in a suitable way, we get a new equivalent set of relations of the form

$$rX^{1+s} + X^{r+s} + \sum_{i \ge r} a_i X^{i+s}, \quad 0 \le s < n-1,$$

(again stopping each summation with the term X^n). By induction define a new set of generators e_1, \ldots, e_n by $e_i = X^i$, $1 \le i \le r-1$, and $re_i = -e_{i+r-1}$. By induction we prove that $e_i = X^i + \sum_{j>i} b_j X^j$. For suppose $e_i = X^i + \sum_{j>i} b_j X^j$. Then $re_i = rX^i + \sum_{j>i} b_j rX^j = -X^{i+r-1} - \sum_{j>i+r-1} b_j' X^j$, so $e_{i+r-1} = X^{i+r-1} + \sum_{j>i+r-1} b_j' X^j$ as required. Thus e_1, \ldots, e_n generate T_n^r . Assuming that these relations among the e_i are all there are, then T_n^r has the following abelian group structure. If $1 \le n \le r-1$, then T_n^r is the direct sum of n copies of Z/rZ (with generators X, X^2, \ldots, X^n respectively). As n varies from r to 2r-1, the copies of Z/rZ are changed one after the other into Z/r^2Z . Then they are changed one after the other into Z/r^3Z , and so on. We get a group of the required order, hence we have enough relations among the e_i . In general, the generators of the cyclic groups will be X, X^2, \ldots, X^t where $t=\inf(n,r-1)$.

Now assume $r=p^a$, a>1. Each of the C_i^r , $2 \le i < p$, has a factor r. Thus, as above, we can change our relations to $rX^{1+s} + \sum_{i \ge p} a_i X^{i+s}$, $0 \le s < n-1$. The integer a_p is divisible by p^{a-1} , but not by p^a . Thus, for $1 \le n \le p-1$, T_n^r is the direct sum of n copies of Z/rZ, and in T_p^r one of the copies of Z/rZ is changed into $Z/p^{a+1}Z$ $\oplus Z/p^{a-1}Z$. After this, things seem more complicated.

Added in proof. The abelian group structure of $B_{n,r}$ has been completely determined. See A. Chabour, C. R. Acad. Sci. Paris Sér. A 272 (1971), p. 462.

6. Relation with open subsets of proj. Let $f \in A_n^r$ be homogeneous of degree r. Then $A_n^r[f^{-1}]$ is graded (in positive and negative degrees). Let G_n^r be the degree 0 part. Then $A_n^r[f^{-1}] = G_n^r[f, f^{-1}]$ where f is an indeterminant over G_n^r . Also $G_n^r \simeq A_n^r/(f-1)A_n^r$ (Proposition 2.2.5, p. 24 of [6]). Finally $D_+(f) = \text{Spec } (G_n^r)$. We now

have a surjection $G_0(A_n^r) \to G_0(A_n^r[f^{-1}]) = G_0(G_n^r[f, f^{-1}]) \cong G_0(G_n^r)$. This yields the theorem on p. 299 of [5], but with A no longer required to be regular, and the Grothendieck group G_0 replacing K_0 .

Now suppose that r=2, A is regular, and $G_0(A)=K_0(A)=Z$. This puts us in the situation discussed at the end of §6 in [5]. The above surjection reads

$$Z[X]/(X^{n+1}, (1+X)^2-1) \to Z[X]/(X^{l+1}, (1+X)^2-1) = K_0(G_n^r), l \le n.$$

It was originally hoped that calculating $G_0(A_n^r)$ would lower the upper bound on l, but this has turned out not to be the case. At least, the possibility remains that l could be as large as n, for suitable choice of A and f.

7. The ideal class groups. The results in this section are included for comparison with G_0 . Let B be a graded Krull ring (in positive degrees.) Let DH(B) be the free abelian group on homogeneous prime ideals of height one, and let FH(B)be the subgroup of DH(B) generated by the divisors of homogeneous elements of B. Then c(B) = DH(B)/FH(B) by Proposition 7.1, p. 24 of [9]. Let X = Proi(B), and $K = \{f/g \mid f, g \text{ are homogeneous elements in } B \text{ of same degree}\} = \text{stalk of } X$ at the generic point. The irreducible closed subsets of codimension one in X correspond to homogeneous primes of height one in B (assuming B_+ is not of height ≤ 1). Let X_1 be the set of generic points of irreducible subsets of codimension one in X. Then for all $P \in X_1$, the stalk of X at P is a discrete valuation ring, so we can define the divisor of $h \in K$ by $(h) = \sum v_P(h) \cdot P$ as P ranges over X_1 . If, as above, we identify the P's with the homogeneous primes of height one in B it is readily seen that this divisor of h is the same as the divisor of h regarded as an element in the quotient field of B. (The last observation shows that $v_P(h) = 0$ for all but a finite number of $P \in X_1$.) Thus if we let c(X) = free abelian group on irreducible subsets of codimension one of X, factored out by the subgroup generated by the divisors of functions (i.e., elements of K), then $c(X) = DH(B)/FH_0(B)$, where $FH_0(B)$ is the subgroup of DH(B) generated by the divisors of elements of K.

We now have an exact sequence

$$0 \to FH(B)/FH_0(B) \to c(X) \to c(B) \to 0.$$

The homomorphism degree: $FH(B) \to Z$ has kernel $FH_0(B)$, and the image will be isomorphic to Z. Thus $FH(B)/FH_0(B) \cong Z$ (noncanonically) and our exact sequence reads $0 \to Z \to c(X) \to c(B) \to 0$.

Now take $X = P_A^n = \text{Proj } A[X_0, \dots, X_n]$, where A is a Krull ring. Then c(B) = c(A), so the exact sequence reads

$$0 \to Z \to c(P_A^n) \to c(A) \to 0$$
.

Let L be the quotient field of A. Then we have a splitting homomorphism $c(P_A^n) \to c(P_L^n) = Z$. Thus $c(P_A^n) = Z \oplus c(A)$. We also have $P_A^n = \text{Proj } (A_n^r)$. The ring A_n^r is a Krull ring since $A_n^r = K_n^r \cap A[X_0, \ldots, X_n]$, where K_n^r is the quotient field of A_n^r .

The exact sequence reads $0 \to Z \to Z \oplus c(A) \to c(A_n^r) \to 0$. The image of $1 \in Z$ is r, so we get $c(A_n^r) = Z/rZ \oplus c(A)$. This shows that the homomorphism $G_0(A_n^r) \to Z \oplus c(A_n^r)$ (where A is noetherian integrally closed) is not an isomorphism if r > 1.

Divisorial ideals (of A_n^r) corresponding to the elements of Z/rZ can be taken as $I_i = X_0^{r-i} J_i$, where J_i is the A_n^r -submodule of $A[X_0, \ldots, X_n]$ generated by the monomials of degree i, $0 \le i \le r-1$. The ideal I_i is divisorial since $I_i = A_n \cap (X_0^{r-i}/X_1^{r-i})$, but is not invertible if i > 0.

Now we remark that if $B = \bigoplus_{n \ge 0} B_i$ is a graded Krull ring, then Pic $B = \text{Pic } B_0$. The inclusion $B_0 \to B$ induces, by $\bigotimes_{B_0} B$, a monomorphism Pic $(B_0) \to \text{Pic } B$ which we need only show is onto. Proposition 7.1, p. 24 of [9], shows that it is sufficient to consider graded projective modules of rank one, and by Proposition 3.3, p. 637 of [1], these are all of the form $P_0 \bigotimes_{B_0} B$. This is a slight generalization of Lemma 5.1 of [8].

The results of this section can be summarized as follows:

THEOREM 3. Let B be a graded Krull ring (in positive degrees) such that the elements of positive degree do not form a prime ideal of height ≤ 1 . Let X = Proj (B). Then there is an exact sequence $0 \to Z \to c(X) \to c(B) \to 0$. If A is any Krull ring, then $c(A_n^r) = Z/rZ \oplus c(A)$. Finally, if B is any graded Krull ring in positive degrees, then Pic $B = \text{Pic } B_0$.

8. The noncommutative case. Let A be a right noetherian ring (as defined in [1, p. 122]). Let A_n^r be the A-subalgebra of $B_n = A[X_0, \ldots, X_n]$ generated by monomials of degree r. Let S be the (central) multiplicative set generated by X_n^r . Then $S^{-1}A_n^r = A[X_0/X_n, X_1/X_n, \ldots, X_{n-1}/X_n, X_n^r, X_n^{-r}]$, which is right regular. Thus we may apply Theorem 6.2, p. 492 of [1], to get an exact sequence

$$K_1(S^{-1}A_n^r) \xrightarrow{\partial} G_0(A_n^r/X_n^rA_n^r) \longrightarrow G_0(A_n^r) \longrightarrow K_0(S^{-1}A_n^r) \longrightarrow 0.$$

But $K_1(S^{-1}A_n^r) = K_0(A) \oplus K_1(A)$ and $K_0(S^{-1}A_n^r) = K_0(A)$ by Theorem 2 and Theorem 1 of [2], respectively. We have a surjection $A_n^r/X_n^rA_n^r \to A_{n-1}^r$ with nilpotent kernel. Thus by Proposition 2.3, p. 454 of [1], we have an isomorphism $G_0(A_{n-1}^r) \to G(A_n^r/X_n^r)$. Furthermore ∂ kills $K_1(A)$, since in the statement of Proposition 6.1, p. 492 of [1], α can already be taken as an automorphism. Thus we get an exact sequence

$$K_0(A) \to G_0(A_{n-1}^r) \to G_0(A_n^r) \to K_0(A) \to 0.$$

If M is a Z_n^r module, then $M \to M \otimes_Z A - \operatorname{Tor}_1^Z(M, A)$ defines a homomorphism $G_0(Z_n^r) \to G_0(A_n^r)$. We now have the following commutative diagram:

$$0 \longrightarrow Z \longrightarrow G_0(Z_{n-1}^r) \longrightarrow G_0(Z_n^r) \longrightarrow Z \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_0(A) \longrightarrow G_0(A_{n-1}^r) \longrightarrow G_0(A_n^r) \longrightarrow K_0(A) \longrightarrow 0$$

In §2, the rings $G_0(Z_n^r)$ were found to be $Z[X]/(X^{n+1}, (1+X)^r) = B_{n,r}$. If we tensor the top row with $K_0(A)$ the sequence remains exact (except at the left) since the top row is the direct sum of two short exact sequences $0 \to Z \to B_{n-1,r} \to T_n^r \to 0$ and $0 \to Z \to Z \to 0$. The groups in the bottom row are $K_0(A)$ -modules. Thus we get a commutative diagram

$$K_{0}(A) \longrightarrow B_{n-1,r} \otimes_{Z} K_{0}(A) \longrightarrow B_{n,r} \otimes_{Z} K_{0}(A) \longrightarrow K_{0}(A) \longrightarrow 0$$

$$\approx \downarrow \qquad \qquad \downarrow f_{n-1} \qquad \qquad \downarrow f_{n} \qquad \qquad \downarrow \approx$$

$$K_{0}(A) \longrightarrow G_{0}(A_{n-1}^{r}) \longrightarrow G_{0}(A_{n}^{r}) \longrightarrow K_{0}(A) \longrightarrow 0$$

The diagram is commutative by the universal mapping property of \otimes . Now f_0 is an isomorphism. Therefore we may use the five-lemma to conclude by induction that f_n is an isomorphism for all n. This proves

THEOREM 4. Let A be a right noetherian regular ring. Then $G_0(A_n) \cong K_0(A) \otimes_{\mathbb{Z}} \mathbb{Z}[X]/(X^{n+1}, (1+X)^r-1)$.

BIBLIOGRAPHY

- 1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
- 2. H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 61-79. MR 30 #4806.
- 3. A. Borel and J.-P. Serre, *Le théorème de Riemann-Roch*, Bull. Soc. Math. France **86** (1958), 97-136. MR **22** #6817.
- 4. N. Bourbaki, Algèbre commutative. Chap. 7: Diviseurs, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
- 5. A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective space, Invent. Math. 10 (1970), 298-304.
- 6. A. Grothendieck, Éléments de géométrie algébrique. II, Inst. Hautes Études Sci. Publ. Math. No. 8 (1961). MR 36 #177b.
- 7. ——, Éléments de géométrie algébrique. III, Inst. Hautes Études Sci. Publ. Math. No. 11 (1961). MR 36 #177c.
- 8. M. P. Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242-253. MR 39 #2774.
- 9. P. Samuel, Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Math., no. 30, Tata Institute of Fundamental Research, Bombay, 1964. MR 35 #5428.
- 10. SGA 6 (1966-67) Théorie globale des intersections et théorème de Riemann-Roch, Sém. Inst. Hautes Études Sci. dirigé par P. Bertelot, A. Grothendieck et L. Illusie (to appear).
- 11. L. G. Roberts, G_0 of certain subrings of a graded ring, Department of Math., Queen's University, Kingston, 1971 (Preprint).

DEPARTMENT OF MATHEMATICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA